Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/43009
Título: Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains
Palavras-chave: Total nitrogen
Cation exchange capacity
Soil organic matter
Machine learning algorithms
Kaolinitic soils
Cohesive soils
Nitrogênio total
Capacidade de troca de catiões
Matéria orgânica do solo
Algoritmos de aprendizado de máquina
Solos cauliníticos
Solos coesivos
Data do documento: 1-Jan-2020
Editor: Elsevier
Citação: ANDRADE, R. et al. Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains. Geoderma, Amsterdam, v. 357, 113957, 1 January 2020. DOI: https://doi.org/10.1016/j.geoderma.2019.113957.
Resumo: Portable X-ray fluorescence (pXRF) spectrometry is becoming increasingly popular for predicting soil properties worldwide. However, there are still very few works on this subject under tropical conditions. Therefore, the objectives of this study were to use pXRF data to characterize the Brazilian Coastal Plains (BCP) soils and assess four machine learning algorithms [ordinary least squares regression (OLS), cubist regression (CR), XGBoost (XGB), and random forest (RF)] for prediction of total nitrogen (TN), cation exchange capacity (CEC), and soil organic matter (SOM) using pXRF data. A total of 285 soil samples were collected from the A and B horizons representing Ultisols, Oxisols, Spodosols, and Entisols. The pXRF reported elements helped in the characterization of the BCP soils. In general, the RF model achieved the best performances for TN (R2 = 0.50), CEC (0.75), and SOM (0.56) when A and B horizons were combined, although better results have been reported in the literature for soils from other regions of the world. The results reported here for the BCP soils represent alternatives for reducing costs and time needed for assessing such data, supporting agronomic and environmental strategies.
URI: https://www.sciencedirect.com/science/article/abs/pii/S0016706119307530#!
http://repositorio.ufla.br/jspui/handle/1/43009
Aparece nas coleções:DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.