Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/45434
metadata.teses.dc.title: Detecção de mudanças em áreas de cerrado usando inteligência artificial
metadata.teses.dc.title.alternative: Change detection in savanna areas using aritifial intelligence
metadata.teses.dc.creator: Pereira, Eveline Aparecida
metadata.teses.dc.creator.Lattes: http://lattes.cnpq.br/7798902369426125
metadata.teses.dc.contributor.advisor1: Carvalho, Luís Marcelo Tavares de
metadata.teses.dc.contributor.advisor-co1: Acerbi Júnior, Fausto Weimar
metadata.teses.dc.contributor.referee1: Ferreira, Danton Diego
metadata.teses.dc.contributor.referee2: Acerbi Júnior, Fausto Weimar
metadata.teses.dc.subject: Aprendizado de máquinas
Sensoriamento remoto
Geographic Object-based Image Analysis (GEOBIA)
Machine learning
Remote sensing
Cerrado
metadata.teses.dc.date.issued: 10-Nov-2020
metadata.teses.dc.identifier.citation: PEREIRA, E. A. Detecção de mudanças em áreas de cerrado usando inteligência artificial. 2020. 45 p. Dissertação (Mestrado em Engenharia Florestal) – Universidade Federal de Lavras, Lavras, 2020.
metadata.teses.dc.description.resumo: O bioma cerrado está sob constante pressão antrópica e poucos esforços tem sido feitos no âmbito do monitoramento dessas mudanças no uso do solo. O sensoriamento remoto aliado a inteligência artificial fornecem ferramentas eficientes e rápidas para detectar mudanças. As questões científicas abordadas neste estudo foram: qual tipo de atributo (espacial ou espectral) e ou a combinação deles melhor diferenciam as mudanças sazonais dos processos de antropização em imagens NDVI-bitemporais? E qual o efeito da intensidade amostral do monitoramento no desempenho dos classificadores utilizando inteligência artificial? O estudo explorou ambas informações, espaciais e espectrais, derivadas de imagens NDVI bi-temporais Landsat na análise do monitoramento, empregando classificadores de alto desempenho: Neural Network Multilayer Perceptron (MLP), Support Vector Machine (SVM) e Random Forest (RF). Foi analisado a intensidade amostral e a robustez dos algoritmos em cada um dos conjuntos de atributos da classificação, a rede MLP obteve a melhor generalização com 75,16% de acurácia global e maior robustez em relação a variação da intensidade amostral. O algoritmo Multilayer Perceptron (MLP) treinado foi aplicado numa área contígua, detectando as mudanças com a precisão de 56% indicando algumas limitações do método. Portanto, os atributos espaciais, derivados de imagens bi-temporais NDVI são capazes de detectar com precisão os desmatamentos e queimadas ocorridos no cerrado, sendo insensíveis as mudanças causadas pelo período sazonal do ambiente.
metadata.teses.dc.description.abstract: Brazil contains large tracts of native vegetation, including large areas of tropical Brazilian Savannas biome, which has been threatened due to the expansion of anthropic activities. In the last years, Remote Sensing (RS) data combined with Artificial Intelligence (AI) have been used to identify the dynamic of the Land use/Land Cover Change (LULCC) of these areas, producing LULCC maps with high accuracy. However, the choice of the AI algorithm and the selection data attributes for the learning process are crucial steps, especially in environments influenced by seasonal variations. Considering these circumstances, the study focus in the following questions: a) what type of attribute (spatial or spectral) or their combination could better differentiate the seasonal changes produced by weather conditions, from atrophic changes in RS images; b) what is the effect of the training sample size into different AI classifiers to produce change maps. Thus, spatial and spectral information were extract for objects generated from Landsat NDVI images in a Tropical Savanna area, acquired at different seasonal periods. The Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Random Forest (RF) algorithms were compared. The MLP produced the most accurate change map, with 75,16% of global accuracy and greater robustness in relation to the variation of the sample intensity. In order to evaluate the generalization capacity of the algorithm, the trained MLP was used to detect changes in contiguous Landsat tiles. The results showed a decrease to 56% of global accuracy, which indicates a limitation of the method. Therefore, the spatial attributes were capable of accurately differentiate deforestation and fires sites, from seasonal changes.
metadata.teses.dc.identifier.uri: http://repositorio.ufla.br/jspui/handle/1/45434
metadata.teses.dc.publisher: Universidade Federal de Lavras
metadata.teses.dc.language: por
Appears in Collections:DCF - Engenharia Florestal - Mestrado (Dissertações)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.