Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/45473
Título: Exactly solvable mixed-spin Ising-Heisenberg diamond chain with biquadratic interactions and single-ion anisotropy
Palavras-chave: Ising-Heisenberg diamond chain
Heisenberg bilinear interactions
Heisenberg biquadratic interactions
Ferrimagnetic
Data do documento: 29-Mar-2011
Editor: American Physical Society (APS)
Citação: ROJAS, O. et al. Exactly solvable mixed-spin Ising-Heisenberg diamond chain with biquadratic interactions and single-ion anisotropy. Physical Review B, [S.l.], v. 83, n. 9, Mar. 2011. DOI: 10.1103/PhysRevB.83.094430.
Resumo: An exactly solvable variant of a mixed spin-(1/2,1) Ising-Heisenberg diamond chain is considered. Vertical spin-1 dimers are taken as quantum ones with Heisenberg bilinear and biquadratic interactions and with single-ion anisotropy, while all interactions between spin-1 and spin-1/2 residing on the intermediate sites are taken in the Ising form. The detailed analysis of the T=0 ground-state phase diagram is presented. The phase diagrams have been shown to be rather rich, demonstrating a large variety of ground states: a saturated one, three ferrimagnetic ones with magnetization equal to 3/5, and another four ferrimagnetic ground states with magnetization equal to 1/5. There are also two frustrated macroscopically degenerated ground states that could exist at zero magnetic filed. Solving the model exactly within a classical transfer-matrix formalism we obtain exact expressions for all thermodynamic functions of the system. The thermodynamic properties of the model have been described exactly by exact calculation of the partition function within the direct classical transfer-matrix formalism.
URI: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.094430
http://repositorio.ufla.br/jspui/handle/1/45473
Aparece nas coleções:DFI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.