Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/45508
Título: | Equivalence between non-bilinear spin-S Ising model and Wajnflasz model |
Palavras-chave: | Statistical physics Nonlinear physics |
Data do documento: | 25-Mai-2012 |
Editor: | Elsevier |
Citação: | ROJAS, O.; SOUZA, S. M. de. Equivalence between non-bilinear spin-S Ising model and Wajnflasz model. The European Physical Journal B, [S.l.], v. 85, May 2012. DOI: 10.1140/epjb/e2012-20998-0. |
Resumo: | We propose the mapping of polynomial of degree 2S constructed as a linear combination of powers of spin-S (for simplicity, we called as spin-S polynomial) onto spin-crossover state. The spin-S polynomial in general can be projected onto non-symmetric degenerated spin up (high-spin) and spin down (low-spin) momenta. The total number of mapping for each general spin-S is given by 2(22S − 1). As an application of this mapping, we consider a general non-bilinear spin-S Ising model which can be transformed onto spin-crossover described by Wajnflasz model. Using a further transformation we obtain the partition function of the effective spin-1/2 Ising model, making a suitable mapping the non-symmetric contribution leads us to a spin-1/2 Ising model with a fixed external magnetic field, which in general cannot be solved exactly. However, for a particular case of non-bilinear spin-S Ising model could become equivalent to an exactly solvable Ising model. The transformed Ising model exhibits a residual entropy, then it should be understood also as a frustrated spin model, due to competing parameters coupling of the non-bilinear spin-S Ising model. |
URI: | https://link.springer.com/article/10.1140/epjb/e2012-20998-0 http://repositorio.ufla.br/jspui/handle/1/45508 |
Aparece nas coleções: | DFI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.