Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/45643
Título: | The β-expansion of periodic dressed chain models |
Palavras-chave: | Quantum statistical mechanicsIsing model β-expansion Ising model Staggered |
Data do documento: | 15-Set-2011 |
Editor: | Elsevier |
Citação: | SILVA, E. V. C. et al. The β-expansion of periodic dressed chain models. Physica A, [S.l.], v. 390, n. 18-19, p. 3108-3119, Sept. 2011. DOI: 10.1016/j.physa.2011.04.018. |
Resumo: | We revisit the method of calculating the β-expansion of the Helmholtz free energy of any one-dimensional (1D) Hamiltonian with invariance under space translations, presented in [O. Rojas, S.M. de Souza, M.T. Thomaz, J. Math. Phys. 43 (2002) 1390], extending this method to 1-D Hamiltonians that are invariant under translations along super-sites (sequences of l sites). The method is applicable, for instance, to spin models and bosonic/fermionic versions of Hubbard models, either quantum or classical. As an example, we focus on the staggered spin-S Ising model in the presence of a longitudinal magnetic field, comparing some of its thermodynamic functions to those of the standard Ising model. We show that for arbitrary values of spin (S∈{1,3/2,2,…}) but distinct values of the coupling constant and the magnetic field, the specific heat and the z-component of the staggered and usual magnetizations can be well approximated by their respective thermodynamic function of the spin-1/2 models in a suitable interval of temperature. These approximations are valid for the standard Ising model as well as for the staggered model, the thermodynamics of which are known exactly. |
URI: | https://www.sciencedirect.com/science/article/pii/S0378437111003128 http://repositorio.ufla.br/jspui/handle/1/45643 |
Aparece nas coleções: | DFI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.