Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/48049
Título: | Genotype-by-environment interaction for turfgrass quality in bermudagrass across the southeastern United States |
Palavras-chave: | Genotype-by-environment interaction Genetic covariance matrix Turfgrass - performance Genetic correlations between drought or nondrought Breeding program Interação genótipo X ambiente Grama - Qualidade Matriz de covariância genética Correlação genética Melhoramento vegetal |
Data do documento: | Jul-2020 |
Editor: | Crop Science Society of America |
Citação: | GOUVEIA, B. T. et al. Genotype-by-environment interaction for turfgrass quality in bermudagrass across the southeastern United States. Crop Science, [S. I.], v. 60, n. 6, p. 3328-3343, Nov./Dec. 2020. DOI: https://doi.org/10.1002/csc2.20260. |
Resumo: | Estimation of genotype-by-environment interaction (GEI) is important in breeding programs because it provides critical information to guide selection decisions. In general, multienvironment trials exhibit heterogeneity of variances and covariances at several levels. Thus, the objectives of this study were (a) to find the best genetic covariance matrix to model GEI and compare changes in genotypic rankings between the best covariance structure against a compound symmetry structure, (b) to define mega-environments for turfgrass performance across the southeastern United States, and (c) to estimate genetic correlations between drought or nondrought and growing or nongrowing conditions to determine the extent of GEI under specific environments. Three nurseries with 165, 164, and 154 genotypes were evaluated in 2011–2012, 2012–2013, and 2013–2014, respectively. These nurseries were conducted at eight locations (Citra, FL; Hague, FL; College Station, TX; Dallas, TX; Griffin, GA; Tifton, GA; Stillwater, OK; and Jackson Springs, NC). The response variables were averaged turfgrass quality (TQ), TQ under drought (TQD), nondrought TQ (TQND), TQ under actively growing months (TQG), and TQ under nongrowing months (TQNG). This study demonstrated that (a) the best variance structure varied among traits and seasons, and changes in genotype rankings were dependent on GEI; (b) considering TQ and TQND, mega-environments formed between Jackson Springs and College Station, and between Citra, Dallas, and Griffin, whereas Stillwater, Hague, and Tifton represented unique environments across the southeastern United States; and (c) genetic correlations between drought or nondrought and growing or nongrowing conditions suggested that indirect selection can be efficient in multienvironment trials for contrasting environmental conditions. |
URI: | https://doi.org/10.1002/csc2.20260 http://repositorio.ufla.br/jspui/handle/1/48049 |
Aparece nas coleções: | DBI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.