Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/48446
Título: Adsorção de íons metálicos em alga marinha Lithothamnium calcareum
Título(s) alternativo(s): Adsorption of metal ions in marine algae Lithothamnium calcareum
Autores: Oliveira, Luiz Fernando Coutinho de
Franco, Camila Silva
Oliveira, Luiz Fernando Coutinho de
Franco, Camila Silva
Thebaldi, Michael Silveira
Fia, Ronaldo
Marques, Rosângela Francisca de Paula Vitor
Palavras-chave: Biossorventes
Cinética de adsorção
Deslocamento miscível
Elementos traço
Isoterma de adsorção
Biosorbent
Adsorption kinetics
Miscible displacement
Trace elements
Adsorption isotherm
Data do documento: 8-Nov-2021
Editor: Universidade Federal de Lavras
Citação: SILVA, J. R. M. e. Adsorção de íons metálicos em alga marinha Lithothamnium calcareum. 2021. 86 p. Dissertação (Mestrado em Recursos Hídricos) – Universidade Federal de Lavras, Lavras, 2021.
Resumo: Due to the acceleration of global development and industrialization, the contamination of water bodies resulting from the discharge of industrial effluents is one of the main threats to the environment and human health. Adsorption is considered an auxiliary process in the treatment of effluents that have a high concentration of metal ions in their composition. In this sense, due to their high availability, regeneration capacity and low cost, marine algae have been considered as promising adsorbents for the removal of metallic ions from industrial effluents. Given the above, the objective was to evaluate the adsorption capacity of the metallic ions Lead (Pb), Chromium (Cr), Manganese (Mn) and Zinc (Zn) to the marine algae Lithothamnium calcareum, submitted to thermochemical treatment, through kinetic tests adsorption, batch adsorption and mobility in a fixed bed column filled with Lithothamnium calcareum and sand, with a view to developing a simple technique for the treatment of effluents with a high concentration of metal ions. In the adsorption kinetics, 0.2 g of alga was weighed, amount transferred to 125 mL Erlenmeyer flasks, to which 15 mL of solution at a concentration of 5 mg L-1 of the metal ion was added. The vials were shaken at 60 rpm for 2, 5, 10, 20, 60, 120, 180 and 240 minutes. In batch adsorption, 0.2 g of alga was weighed, the amount transferred to 125 mL Erlenmeyer flasks, to which 15 mL of solution was added in concentrations of 5, 10, 20, 50, 100, 250 and 500 mg L-1 of the metallic ion. The flasks were shaken at 60 rpm for 24 hours. In both assays, after shaking, the collected supernatant solutions were centrifuged at 2000 rpm for 5 minutes, and the remaining concentrations of the metal ions under study were determined by atomic absorption spectrometry. The data obtained in the adsorption kinetics tests were fitted by the Pseudo-first order, Pseudo-second order and Elovich models and the data obtained in the batch adsorption tests were fitted by the linear Freundlich, potential Freundlich, Langmuir and Sips models. The fixed bed column was built in PVC tube, 20.02 cm high and 4.42 cm in diameter, filled with Lithothamnium calcareum and sand in a proportion of 1:1 by mass. Mobility tests were conducted with constant hydraulic load and upward flow. The elements Pb, Cr, Mn and Zn were evaluated individually, at initial concentrations equal to 576.00; 668.15; 500.00 and 718.35 mg L-1, respectively. The adsorptive capacity was evaluated by constructing elution curves, analyzing the delay factor, the partition coefficient and the mass balance of the elements in the column. The elution curves were integrated by applying the Gompertz, Logistic, Ratkowsky, Morgan-Mercer-Flodin (MMF) and Weibull models. The results obtained in the adsorption kinetics and batch adsorption tests showed that the marine algae Lithothamnium calcareum submitted to thermochemical treatment presented itself as a potential material to be used in the adsorption of Pb, Cr, Mn and Zn. The results obtained in the mobility tests in a fixed bed column showed that the Lithothamnium calcareum and sand mixture presented high adsorptive capacity for Pb and low adsorptive capacity for Cr, Mn and Zn.
URI: http://repositorio.ufla.br/jspui/handle/1/48446
Aparece nas coleções:Recursos Hídricos - Doutorado (Teses)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE_ Adsorção de íons metálicos em alga marinha Lithothamnium calcareum.pdf1,07 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.