Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/58082
Título: | Um novo algoritmo de rastreamento em tempo real para suínos baseado em Deep Learning |
Título(s) alternativo(s): | A novel real-time tracking algorithm for pigs based on Deep Learning |
Autores: | Campos, Alessandro Torres Green-Miller, Angela Campos, Alessandro Torres Yanagi Junior, Tadayuki Klosowski, Elcio Silverio |
Palavras-chave: | YOLOv8 Inteligência artificial Bem-estar Rastreamento Treinamento Classificação por imagens You Only Look Once version 8 Artificial intelligence Well-being Tracking Training Classification by images Deep learning |
Data do documento: | 7-Jul-2023 |
Editor: | Universidade Federal de Lavras |
Citação: | AMARAL, B. C. Um novo algoritmo de rastreamento em tempo real para suínos baseado em Deep Learning. 2023. 51 p. Dissertação (Mestrado em Engenharia Agrícola)–Universidade Federal de Lavras, Lavras, 2023. |
Resumo: | Ensuring the health and well-being of pigs requires significant effort in terms of labor, material resources, and time. The use of traditional monitoring methods can be stressful for pigs and demand substantial resources from producers, especially in large-scale production systems like industrial pig farming. This practice can have negative impacts on pig health and welfare, as well as the economic profitability of pig production. In this context, the aim of this study was to develop a model using the YOLOv8 architecture to detect and track pigs in a group housing environment. A total of 690 images of pigs housed in groups of nine individuals were used, with the dataset divided into training and validation sets in an 80:20 ratio. With the developed model, it was possible to perform tracking and establish individual identification for each pig. However, the metrics used to evaluate the model's performance yielded unsatisfactory results, highlighting the need to increase the training dataset. Despite these challenges, the model demonstrated good performance in terms of frames per second (FPS), indicating its viability for real-time applications, thus ensuring that the model has potential for practical implementation in pig monitoring and management. |
URI: | http://repositorio.ufla.br/jspui/handle/1/58082 |
Aparece nas coleções: | Engenharia Agrícola - Mestrado (Dissertações) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTACAO_Um novo algoritmo de rastreamento em tempo real para suínos baseado em Deep Learning.pdf | 2,44 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons