Hybrid kriging methods for interpolating sparse river bathymetry point data

Carregando...
Imagem de Miniatura

Notas

Orientadores

Coorientadores

Membros de banca

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Lavras

Faculdade, Instituto ou Escola

Departamento

Programa de Pós-Graduação

Agência de fomento

Tipo de impacto

Áreas Temáticas da Extenção

Objetivos do desesenvolvimento sustentável

Dados abertos

Resumo

Modelos de terreno de rios são usados para análise de mudanças geomorfológicas e para simulações hidrológicas. Estes modelos são interpolados a partir de pontos batimétricos. A batimetria fluvial é geralmente conduzida através de seções transversais, o que pode acarretar em uma malha amostral esparsa. Métodos híbridos de krigagem, como krigagem por regressão (KR) e co-krigagem (CK), empregam a correlação com preditores auxiliares, além da auto-correlação entre variáveis, na predição da variável resposta. Neste estudo, sugere-se que a distância ortogonal de um ponto até a linha de centro do talvegue de um rio pode ser usada como covariável para KR e CK. Considerando-se que a variabilidade da cota do leito do rio é abrupta transversalmente a direção do fluxo, espera-se que quanto maior a distância euclidiana de um ponto até o talvegue, maior será sua elevação. O objetivo deste estudo foi avaliar o uso da covariável proposta em métodos híbridos de krigagem para a predição espacial da topografia do leito de rios. Para tanto, foi realizada uma validação externa, em que seções transversais foram usadas para interpolação e dados levantados entre as seções consistiram na amostra de teste. Os resultados da KR e CK foram comparados aos da krigagem ordinária. A KR apresentou a menor REQM. No mapa resultante da KR, o talvegue foi preservado nas lacunas não amostradas entre as seções, enquanto os demais métodos subestimaram a profundidade do talvegue nestes espaços. Assim, conclui-se que a KR pode melhorar a predição espacial de dados batimétricos fluviais.

Abstract

Terrain models that represent riverbed topography are used for analyzing geomorphologic changes, calculating water storage capacity, and making hydrologic simulations. These models are generated by interpolating bathymetry points. River bathymetry is usually surveyed through cross-sections, which may lead to a sparse sampling pattern. Hybrid kriging methods, such as regression kriging (RK) and co-kriging (CK) employ the correlation with auxiliary predictors, as well as inter-variable correlation, to improve the predictions of the target variable. In this study, we use the orthogonal distance of a (x, y) point to the river centerline as a covariate for RK and CK. Given that riverbed elevation variability is abrupt transversely to the flow direction, it is expected that the greater the Euclidean distance of a point to the thalweg, the greater the bed elevation will be. The aim of this study was to evaluate if the use of the proposed covariate improves the spatial prediction of riverbed topography. In order to asses such premise, we perform an external validation. Transversal cross-sections are used to make the spatial predictions, and the point data surveyed between sections are used for testing. We compare the results from CK and RK to the ones obtained from ordinary kriging (OK). The validation indicates that RK yields the lowest RMSE among the interpolators. RK predictions represent the thalweg between cross-sections, whereas the other methods under-predict the river thalweg depth. Therefore, we conclude that RK provides a simple approach for enhancing the quality of the spatial prediction from sparse bathymetry data.

Descrição

Área de concentração

Agência de desenvolvimento

Palavra chave

Marca

Objetivo

Procedência

Impacto da pesquisa

Resumen

ISBN

DOI

Citação

BATISTA, P. V. G. et al. Hybrid kriging methods for interpolating sparse river bathymetry point data. Ciência e Agrotecnologia, Lavras, v. 41, n. 4, p. 402-412, July/Aug. 2017.

Link externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como acesso aberto