Uma abordagem de classificação de câncer de pele usando GAN e mecanismo de atenção baseado em RoI

Carregando...
Imagem de Miniatura

Notas

Coorientadores

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Lavras

Faculdade, Instituto ou Escola

Departamento

Departamento de Ciência da Computação

Programa de Pós-Graduação

Programa de Pós-graduação em Ciência da Computação

Agência de fomento

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)

Tipo de impacto

Áreas Temáticas da Extenção

Objetivos do desesenvolvimento sustentável

Dados abertos

Resumo

O câncer de pele é um problema de saúde mundial, tratando-se do tipo de câncer mais comum, sendo dividido em duas categorias, o câncer não melanoma, mais comum e menos letal, e o câncer melanoma, menos comum, porém, com uma grande taxa de mortalidade. O diagnóstico precoce é a melhor forma de combater o câncer de pele, evitando métodos invasivos no câncer de pele não melanoma e aumentando a taxa de cura e a sobrevida no caso do câncer do tipo melanoma. Diversas técnicas de visão computacional estão sendo empregadas na área médica, a fim de auxiliar os profissionais com diagnóstico, recomendação de tratamento, entre outros. Um desses métodos é o uso de redes neurais convolucionais, também chamadas pela sigla CNN, para a classificação de imagens de lesões e tumores, com estudos demonstrando uma capacidade de acerto até maior que de médicos treinados. Entretanto, alguns problemas são encontrados quando se trata da classificação de imagens de lesão de pele, como o desbalanceamento do conjunto de imagens. Para isso, podem ser usadas diversas técnicas para a geração de imagens a fim de balancear o conjunto, porém, uma que tem ganhado destaque é o uso de redes generativas adversárias, também chamadas pela sigla GAN, que são capazes de gerar imagens sintéticas com alta qualidade baseado em um conjunto previamente usado em um processo de treinamento. Este trabalho tem como objetivo buscar métodos que levem a um aumento no desempenho de redes CNN para a classificação de lesão de pele. Para isso, este trabalho propõe uma arquitetura CNN baseada na rede EfficientNetB0, denominada EfficientAttentionNet, para classificação de lesões cutâneas, especificamente melanoma e não melanoma. Em primeiro lugar, o conjunto de dados da imagem original, da International Society for Digital Skin Imaging (ISDIS), é pré-processado para eliminar os pelos ao redor da lesão cutânea. Posteriormente, um modelo GAN gerou imagens sintéticas para equilibrar o número de amostras por classe no conjunto de treinamento. Um modelo U-net é usado para criar máscaras com a região de interesse da imagem. Finalmente, é apresentado o modelo EfficientAttentionNet proposto para classificar o câncer de pele usando mecanismos de atenção com a máscara. Os resultados mostraram que o modelo de classificação proposto atingiu resultados de alto desempenho, obtendo acurácia de 0,979, precisão de 0,945, recall de 0,995 e ROCAUC de 0,976, servindo como referência para pesquisas na área de classificação de lesões cutâneas.

Abstract

Skin cancer is a global health problem, being the most common type of cancer, being divided into two categories, non-melanoma cancer, more common and less lethal, and melanoma cancer, less common, but with a high mortality rate. Early diagnosis is the best way to fight skin cancer, avoiding invasive methods in non-melanoma skin cancer and increasing the cure rate and survival in the case of melanoma type cancer. Several computer vision techniques are being used in the medical field, in order to help professionals with diagnosis, treatment recommendation, among others. One of these methods is the use of convolutional neural networks, also called by the acronym CNN, for the classification of images of lesions and tumors, with studies showing an even greater accuracy capacity than trained physicians. However, some problems are encountered when it comes to skin lesion image classification, such as image set imbalance. For this, several techniques can be used for the generation of images in order to balance the set, however, one that has gained prominence is the use of generative adversarial networks, also called by the acronym GAN, which are capable of generating synthetic images with high quality based on a set previously used in a training process. This work aims to search for methods that lead to an increase in the performance of CNN networks for the classification of skin lesions. For that, this work proposes a CNN architecture based on the EfficientNetB0 network, called EfficientAttentionNet, for classification of skin lesions, specifically melanoma and non-melanoma. First, the original image dataset, from the International Society for Digital Skin Imaging (ISDIS), is pre-processed to eliminate hairs around the skin lesion. Subsequently, a GAN model generated synthetic images to balance the number of samples per class in the training set. A U-net template is used to create masks with the region of interest of the image. Finally, the proposed EfficientAttentionNet model to classify skin cancer using mask attention mechanisms is presented. The results showed that the proposed classification model achieved high performance results, obtaining accuracy of 0.979, precision of 0.945, recall of 0.995 and ROCAUC of 0.976, serving as a reference for research in the area of classification of skin lesions.

Descrição

Área de concentração

Agência de desenvolvimento

Palavra chave

Marca

Objetivo

Procedência

Impacto da pesquisa

Resumen

ISBN

DOI

Citação

TEODORO, A. A. M. Uma abordagem de classificação de câncer de pele usando GAN e mecanismo de atenção baseado em RoI. 2021. 82 p. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Lavras, Lavras, 2021.

Link externo

Avaliação

Revisão

Suplementado Por

Referenciado Por