The use of machine learning in digital processing of satellite images applied to coffee crop.

dc.creatorMiranda, Jonathan da Rocha
dc.creatorAlves, Marcelo de Carvalho
dc.date.accessioned2020-09-03T18:07:38Z
dc.date.available2020-09-03T18:07:38Z
dc.date.issued2020
dc.description.abstractRemote sensing can be used to monitor and estimate, with reasonable correct answers, the yield, plant health, and coffee nutrition. Satellite-coupled sensors can obtain information about the spectral signature of the crop, on a time scale, in order to monitor and detect phenological changes. However, the accumulation of data obtained by orbital sensors makes it difficult to understand the relationship between the aspects of coffee. Thus, machine learning can perform data mining and meet the spectral signature patterns that constitute coffee behavior. This literature review sought the survey of research that used machine learning tools applied in digital image processing from satellites for coffee crop monitoring.pt_BR
dc.identifier.citationMIRANDA, J. da R.; ALVES, M. de C. The use of machine learning in digital processing of satellite images applied to coffee crop. CAB Reviews, Wallingford, v. 15, n. 45, p. 1-10, 2020. DOI: 10.1079/PAVSNNR202015045.pt_BR
dc.identifier.urihttps://repositorio.ufla.br/handle/1/42841
dc.identifier.urihttps://www.cabdirect.org/cabdirect/abstract/20203350450pt_BR
dc.languageenpt_BR
dc.publisherCABIpt_BR
dc.rightsopenAccesspt_BR
dc.sourceCAB Reviewspt_BR
dc.subjectRemote sensingpt_BR
dc.subjectsatellite imagerypt_BR
dc.subjectCoffeept_BR
dc.subjectImage processingpt_BR
dc.subjectSensoriamento remotopt_BR
dc.subjectProcessamento digital de imagenspt_BR
dc.subjectCafeiculturapt_BR
dc.subjectImagem de satélitept_BR
dc.titleThe use of machine learning in digital processing of satellite images applied to coffee crop.pt_BR
dc.typeArtigopt_BR

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
953 B
Formato:
Item-specific license agreed upon to submission
Descrição: