tese

Estimação em regressão inversa no modelo CAR espacial

Carregando...
Imagem de Miniatura

Notas

Editores

Coorientadores

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Lavras

Faculdade, Instituto ou Escola

Departamento

Departamento de Ciências Exatas

Programa de Pós-Graduação

Programa de Pós-Graduação em Estatística e Experimentação Agropecuária

Agência de fomento

Tipo de impacto

Áreas Temáticas da Extenção

Objetivos de Desenvolvimento Sustentável

Dados abertos

Resumo

Regressão inversa ou calibração estatística é uma técnica estatística utilizada em situações em que, por meio da análise de regressão, deseja-se estimar um valor desconhecido da variável independente dado o valor da variável dependente. Métodos para a estimação pontual e intervalar na regressão inversa para esse valor desconhecido estão disponíveis na literatura. Porém, observa-se que são escassos os métodos que considerem a informação espacial dos dados no processo de estimação na regressão inversa. O objetivo principal desta tese é propor a regressão espacial inversa ou calibração espacial por meio de métodos para a estimação pontual e intervalar do valor desconhecido da variável independente utilizando um modelo que considere a estrutura de dependência espacial em dados de área. Esses estimadores foram construídos a partir de um modelo do erro espacial ou modelo condicional autorregressivo (CAR) e aplicados em dados reais que caracterizam um problema de calibração espacial. Os resultados obtidos mostram que a regressão espacial inversa é apropriada na análise dados de área com dependência espacial, fornecendo um ferramenta útil para casos que configurem a necessidade de se obter o valor de uma variável independente conhecendo-se o valor da variável dependente. Observa-se também que, um grande potencial que esse modelo de regressão espacial inversa tem, está no fato de que ele pode ser um método eficiente de imputação, em casos específicos, de dados faltantes na análise de dados de área.

Abstract

Inverse regression or statistical calibration is a statistical technique used in situations where, through regression analysis, it is desired to estimate a unknown value of the independent variable given the value of the dependent variable. Methods for the point and interval estimation in the inverse regression for this unknown value are available in the literature. However, it is observed that there are few methods that consider the spatial information of the data in the estimation process in the inverse regression. The main objective of this thesis is to propose inverse spatial regression or spatial calibration by means of methods for the point and interval estimation of the unknown value of the independent variable using a model that considers the spatial dependence structure in area data. These estimators were constructed using spatial error model or autoregressive conditional model (CAR) and applied to real data that characterize a spatial calibration problem. The results show that the inverse spatial regression is appropriate in the spatial dependence data area analysis, providing a useful tool for cases that configure the need to obtain the value of an independent variable by knowing the value of the dependent variable. It is also observed that a great potential that this inverse spatial regression model has is in the fact that it can be an efficient method of imputation, in specific cases, of missing data in the analysis of area data.

Descrição

Área de concentração

Agência de desenvolvimento

Palavra chave

Marca

Objetivo

Procedência

Impacto da pesquisa

Resumen

ISBN

DOI

Citação

SOUZA, T. V. de. Estimação em regressão inversa no modelo CAR espacial. 2017. 92 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2017.

Link externo

Avaliação

Revisão

Suplementado Por

Referenciado Por