info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/publishedVersion
Time complexity of algorithms that update the Sierpinski-like and modified Hilbert curves
Carregando...
Notas
Data
Orientadores
Editores
Coorientadores
Membros de banca
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Lavras
Faculdade, Instituto ou Escola
Departamento
Programa de Pós-Graduação
Agência de fomento
Tipo de impacto
Áreas Temáticas da Extenção
Objetivos de Desenvolvimento Sustentável
Dados abertos
Resumo
Abstract
Descrição
This paper presents the time complexity of two algorithms that update space-filling curves of adaptively refined domains. The Modified Hilbert (space-filling) Curve was proposed to traverse square-shaped adaptive-refined meshes. Whereas, the Sierpinski-like (space-filling) Curve was proposed in order to traverse triangular-shaped adaptive-refined meshes. Those curves are variations of the namesimilar well-known space-filling curves, i.e. the Hilbert Curve and the Sierpinski Curve. Moreover, they ´are adapted from those classical curves that traverse regular discretized domains. This paper describes the asymptotic tight bounds of algorithms that update the Sierpinski-like and the Modified Hilbert Curves ´ space-filling curves.
Área de concentração
Agência de desenvolvimento
Palavra chave
Marca
Objetivo
Procedência
Impacto da pesquisa
Resumen
Palavras-chave
ISBN
DOI
Citação
OLIVEIRA, S. L. G. de; KISCHINHEVSKY, M. Time complexity of algorithms that update the Sierpinski-like and modified Hilbert curves. INFOCOMP Journal of Computer Science, Lavras, v. 9, n. 1, p. 90-97, Mar. 2010.
Link externo
Coleções
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution 4.0 International

