Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/55348
Title: Fitting extreme value copulas with unimodal convex polynomial regression using Bernstein polynomials
Keywords: Bernstein polynomials
Pickands function
Extreme value copula
Polinômios de Bernstein
Função de Pickands
Cópulas de valor extremo
Issue Date: 2022
Publisher: Universidade Federal de Lavras
Citation: PRADO, D. G. de O. et al. Fitting extreme value copulas with unimodal convex polynomial regression using Bernstein polynomials. Revista Brasileira de Biometria, Lavras, v. 40, n. 2, p. 152-165, 2022. DOI: 10.28951/bjb.v40i2.548.
Abstract: Bernstein polynomials are suitable for performing shape-constrained regressions, in particular, for unimodal convex regression. The Pickands function is convex and unimodal, being a fundamental element in the theory of extreme value copulas. The purpose of this article is to explain in details the use of Bernstein polynomials in the estimation of Pickands function and to establish a new test of significance for extreme value copulas.
URI: http://repositorio.ufla.br/jspui/handle/1/55348
Appears in Collections:DEX - Artigos publicados em periódicos



This item is licensed under a Creative Commons License Creative Commons