Use este identificador para citar ou linkar para este item:
Título: Ajuste de modelos não lineares para descrição do fruto cajá-manga
Palavras-chave: Anacardiaceae
Curva de crescimento vegetal
Plant growth curve
Data do documento: 2019
Editor: Universidade Federal de Alfenas
Citação: LIMA, K. P. de et al. Ajuste de modelos não lineares para descrição do fruto cajá-manga. Sigmae, Alfenas, v. 8, n. 2, p. 221-226, 2019.
Resumo: The cajá-manga is appreciated in Brazil, consumed in natura or as frozen pulp, beverages, sweets, ice creams and popsicles, in addition it is known that this fruit is highly perishable and with short commercialization period. In this way, studying the plant growth curve is useful to help the elaboration of management methods to detect the harvesting season. Regarding the growth curve, the use of non-linear models is highlighted. The objective of this study was to compare and adjust non-linear models of caj´a-manga fruit mass data over the course of days. For this, two collection periods (40, 60, 80, 100,120,140,160,180,200,220,240 and 260) were used. The nonlinear models Logistic, Gompertz and von Bertalanffy were used to describe the caj´a-manga fruit. The parameters of the models were estimated using the least squares method using Gauss-Newton algorithm. Corrected Akaike information criteria and adjusted coefficient of determination were used as criteria for choosing the models that best fit the data. In addition, the analyzes were performed in software R. The results obtained show that the asymptotic weight was 97.843 to 109.801 g. Among the adjusted models, it is concluded that the Gompertz model is suitable for the description of the cajá-mango fruit.
Aparece nas coleções:DES - Artigos publicados em periódicos
DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Ajuste de modelos não lineares para descrição do fruto cajá-manga.pdf242,38 kBAdobe PDFVisualizar/Abrir

Este item está licenciada sob uma Licença Creative Commons Creative Commons