Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42412
Título: An overview on evolving systems and learning from stream data
Palavras-chave: Evolving intelligence
Fuzzy systems
Neural networks
Incremental machine learning
Inteligência em evolução
Sistemas difusos
Redes neurais
Aprendizagem incremental
Data do documento: Mar-2020
Editor: Springer Nature
Citação: LEITE, D.; ŠKRJANC, I.; GOMIDE, F. An overview on evolving systems and learning from stream data. Evolving Systems, [S. I.], v. 11, p. 181-198, 2020. DOI: https://doi.org/10.1007/s12530-020-09334-5.
Resumo: Evolving systems unfolds from the interaction and cooperation between systems with adaptive structures, and recursive methods of machine learning. They construct models and derive decision patterns from stream data produced by dynamically changing environments. Different components that assemble the system structure can be chosen, being rules, trees, neurons, and nodes of graphs amongst the most prominent. Evolving systems relate mainly with time-varying environments, and processing of nonstationary data using computationally efficient recursive algorithms. They are particularly appropriate for online, real-time applications, and dynamically changing situations or operating conditions. This paper gives an overview of evolving systems with focus on system components, learning algorithms, and application examples. The purpose is to introduce the main ideas and some state-of-the-art methods of the area as well as to guide the reader to the essential literature, main methodological frameworks, and their foundations.
URI: https://doi.org/10.1007/s12530-020-09334-5
http://repositorio.ufla.br/jspui/handle/1/42412
Aparece nas coleções:DAT - Artigos publicados em periódicos
DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.