Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/49928
Title: Effect of the essential oils of Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. on mycotoxin-producing Aspergillus flavus and Aspergillus ochraceus antifungal properties of essential oils
Keywords: Essential oil
Mycotoxins
Biological potential
Aflatoxin
Ochratoxin
Ergosterol
Óleo essencial
Micotoxinas
Potencial biológico
Aflatoxina
Ocratoxina
Issue Date: Oct-2021
Publisher: Oxford University Press/ Federation of European Microbiological Societies
Citation: REZENDE, D. A. de C. S. et al. Effect of the essential oils of Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. on mycotoxin-producing Aspergillus flavus and Aspergillus ochraceus antifungal properties of essential oils. FEMS Microbiology Letters, Oxford, v. 368, n. 19, Oct. 2021. DOI: https://doi.org/10.1093/femsle/fnab137.
Abstract: Essential oils can be a useful alternative to the use of synthetic fungicides because they have biological potential and are relatively safe for food and agricultural products. The objectives of the present study were to evaluate the antifungal and antimycotoxigenic activities of the essential oils from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. against Aspergillus flavus and Aspergillus ochraceus, as well as their effects on ergosterol synthesis and membrane morphology. The antifungal potential was evaluated by mycelial growth analysis and scanning electron microscopy. Fungicidal effects against A. flavus, with MFC of 0.98, 15.62 and 0.98 µL/mL, respectively, were observed for the essential oils from S. montana, M. fragrans and C. flexuosus. Aspergillus ochraceus did not grow in the presence of concentrations of 3.91, 15.62 and 0.98 µL/mL of the essential oils from S. montana, M. fragrans and C. flexuosus, respectively. The essential oils significantly inhibited the production of ochratoxin A by the fungus A. ochraceus. The essential oils also inhibited the production of aflatoxin B1 and aflatoxin B2. The biosynthesis of ergosterol was inhibited by the applied treatments. Biological activity in the fungal cell membrane was observed in the presence of essential oils, given that deleterious effects on the morphologies of the fungi were detected. The essential oils under study are promising as food preservatives because they significantly inhibit toxigenic fungi that contaminate food. In addition, the essential oils hindered the biosynthesis of mycotoxins.
URI: https://doi.org/10.1093/femsle/fnab137
http://repositorio.ufla.br/jspui/handle/1/49928
Appears in Collections:DCA - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.