Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/50665
Título: | Incorporating clustering techniques into GAMLSS |
Palavras-chave: | Bimodal distributions Mixture models Regression models Statistical learning Distribuições bimodais Modelos mistos Modelos de regressão Aprendizado estatístico |
Data do documento: | 2021 |
Editor: | MDPI |
Citação: | RAMIRES, T. G. et al. Incorporating clustering techniques into GAMLSS. Stats, [S. l.], v. 4, n. 4, p. 916-930, 2021. DOI: 10.3390/stats4040053. |
Resumo: | A method for statistical analysis of multimodal and/or highly distorted data is presented. The new methodology combines different clustering methods with the GAMLSS (generalized additive models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the response-variable (target). Any and all parameters of the distribution for the response variable can also be modeled by functions of the new covariate added to other available resources (features). The method of selecting resources to be used is carried out in stages, a step-based method. A simulation study considering multiple scenarios is presented to compare the c-GAMLSS method with existing Gaussian mixture models. We show by means of four different data applications that in cases where other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms mixture models, some recently developed complex distributions, cluster-weighted models, and a mixture-of-experts model. Even though we use simple distributions in our examples, other more sophisticated distributions can be used to explain the response variable. |
URI: | http://repositorio.ufla.br/jspui/handle/1/50665 |
Aparece nas coleções: | DES - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Incorporating clustering techniques into GAMLSS.pdf | 913,17 kB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons