Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/874
Título: Mapping deciduous forests by using time series of filtered modis nfvi and neural networks
Título(s) alternativo(s): Mapeamento de florestas decíduas através de redes neurais artificiais e séries temporais de ndvi modis
Palavras-chave: Remote sensing
Signal processing
Time series
Wavelets analysis
Fourier
Sensoriamento remoto
Processamento de sinais
Análise wavelets
Data do documento: 2010
Editor: Universidade Federal de Lavras
Citação: OLIVEIRA, T. C. de A. et al. Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks. Cerne, Lavras, MG, v. 16, n. 2, p. 123-130, abr./jun. 2010.
Resumo: Multi-temporal images are now of standard use in remote sensing of vegetation during monitoring and classification. Temporal vegetation signatures (i. e., vegetation indices as functions of time) generated, poses many challenges, primarily due to signal to noise-related issues. This study investigates which methods generate the most appropriate smoothed curves of vegetation signatures on MODIS NDVI time series. The filtering techniques compared were the HANTS algorithm which is based on Fourier analyses and Wavelet temporal algorithm which uses the wavelet analysis to generate the smoothed curves. The study was conducted in four different regions of the Minas Gerais State. The smoothed data were used as input data vectors for vegetation classification by means of artificial neural networks for comparison purpose. A comparison of the results was ultimately discussed in this work showing encouraging results and similarity between the two filtering techniques used.
URI: http://repositorio.ufla.br/jspui/handle/1/874
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks2,63 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.