dissertação

Método não supervisionado baseado em curvas principais para reconhecimento de padrões

Carregando...
Imagem de Miniatura

Notas

Editores

Coorientadores

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Lavras

Faculdade, Instituto ou Escola

Departamento

Departamento de Engenharia

Programa de Pós-Graduação

Programa de Pós-Graduação em Engenharia de Sistemas e Automação

Agência de fomento

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Tipo de impacto

Áreas Temáticas da Extenção

Objetivos de Desenvolvimento Sustentável

Dados abertos

Resumo

No presente trabalho é proposto um novo método de agrupamento e classificação de padrões baseado em Curvas Principais. As Curvas Principais consistem numa generalização não linear da Análise de Componentes Principais e são definidas como curvas suaves, unidimensionais, que modelam um conjunto multidimensional de dados, fornecendo um resumo unidimensional destes. O algoritmo de extração de curvas principais que o método proposto se baseou é o k-segmentos não suave. O método divide a curva principal originalmente obtida pelo algoritmo k-segmentos não suave em duas ou mais curvas, de acordo com o número de agrupamentos definido pelo usuário. Em seguida é calculada a distância dos dados às curvas geradas pelo método e, posteriormente, é feita a classificação dos dados de acordo com o critério da menor distância dos dados às novas curvas. Utilizou-se como métrica para o cálculo da distância o quadrado da distância Euclidiana. O método foi aplicado a cinco bases de dados, duas bidimensionais e três multidimensionais. Os resultados foram comparados com os métodos k-means e Self Organized Maps, em que o método proposto superou os demais métodos nas duas bases bidimensionais, com 100% de acerto, e obteve o segundo melhor resultado para as outras bases de dados. O método proposto é mais indicado para agrupamentos com distribuições alongadas e circulares no espaço de parâmetros. Apesar do desempenho alcançado, o método proposto apresentou forte sensibilidade aos parâmetros de entrada como comprimento do segmento e número de segmentos. O problema da sensibilidade aos parâmetros do método será investigado em trabalhos futuros.

Abstract

In this work a new method of data clustering and pattern classification based on principal curves is presented. Principal curves consist of a nonlinear generalization of Principal Component Analysis and are smooth curves, onedimensional, which model a multidimensional dataset, providing a onedimensional summary of it. In the proposed method, the principal curves are extracted by the k-segments algorithm. The method divides the principal curves originally obtained by the k-segments algorithm into two or more curves, according to the number of clusters previously defined by the user. Then, the distances from the data to the curves generated by the method are calculated and thereafter it is made sorting the data according to the criterion of the smallest distance from data to the new curves. The square of the Euclidian distance is used. The method was applied to five databases, two two-dimensional and three multidimensional. The results were compared with the methods k-means and Self Organized Maps, where the proposed method outperformed the other methods in two bases (two-dimensional ones) and obtained the second best result in the other databases. The method shown to be suitable for elongated and circular clusters. Despite its high performance, the method shown to be very sensitive to the input parameters (the segment length and the number of segments). The author intend to exploit the problem of the sensitivity of the method in future works.

Descrição

Área de concentração

Agência de desenvolvimento

Palavra chave

Marca

Objetivo

Procedência

Impacto da pesquisa

Resumen

ISBN

DOI

Citação

MORAES, E. C. C. Método não supervisionado baseado em curvas principais para reconhecimento de padrões. 2016. 132 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação)-Universidade Federal de Lavras, Lavras, 2015.

Link externo

Avaliação

Revisão

Suplementado Por

Referenciado Por