Artigo
RefDiff 2.0: A Multi-language Refactoring Detection Tool
Carregando...
Notas
Data
Orientadores
Editores
Coorientadores
Membros de banca
Título da Revista
ISSN da Revista
Título de Volume
Editor
Institute of Electrical and Electronic Engineers - IEEE
Faculdade, Instituto ou Escola
Departamento
Programa de Pós-Graduação
Agência de fomento
Tipo de impacto
Áreas Temáticas da Extenção
Objetivos de Desenvolvimento Sustentável
Dados abertos
Resumo
Abstract
Identifying refactoring operations in source code changes is valuable to understand software evolution. Therefore, several tools have been proposed to automatically detect refactorings applied in a system by comparing source code between revisions. The availability of such infrastructure has enabled researchers to study refactoring practice in large scale, leading to important advances on refactoring knowledge. However, although a plethora of programming languages are used in practice, the vast majority of existing studies are restricted to the Java language due to limitations of the underlying tools. This fact poses an important threat to external validity. Thus, to overcome such limitation, in this paper we propose RefDiff 2.0, a multi-language refactoring detection tool. Our approach leverages techniques proposed in our previous work and introduces a novel refactoring detection algorithm that relies on the Code Structure Tree (CST), a simple yet powerful representation of the source code that abstracts away the specificities of particular programming languages. Despite its language-agnostic design, our evaluation shows that RefDiff's precision (96%) and recall (80%) are on par with state-of-the-art refactoring detection approaches specialized in the Java language. Our modular architecture also enables one to seamless extend RefDiff to support other languages via a plugin system. As a proof of this, we implemented plugins to support two other popular programming languages: JavaScript and C. Our evaluation in these languages reveals that precision and recall ranges from 88% to 91%. With these results, we envision RefDiff as a viable alternative for breaking the single-language barrier in refactoring research and in practical applications of refactoring detection.
Descrição
Área de concentração
Agência de desenvolvimento
Palavra chave
Marca
Objetivo
Procedência
Submitted by Daniele Faria (danielefaria@ufla.br) on 2020-09-16T14:50:31Z
No. of bitstreams: 0
Approved for entry into archive by Eliana Bernardes (eliana@biblioteca.ufla.br) on 2020-09-17T20:05:46Z (GMT) No. of bitstreams: 0
Made available in DSpace on 2020-09-17T20:05:46Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-01
Approved for entry into archive by Eliana Bernardes (eliana@biblioteca.ufla.br) on 2020-09-17T20:05:46Z (GMT) No. of bitstreams: 0
Made available in DSpace on 2020-09-17T20:05:46Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-01
Impacto da pesquisa
Resumen
Palavras-chave
ISBN
DOI
Citação
SILVA, D. et al. RefDiff 2.0: A Multi-language Refactoring Detection Tool. IEEE Transactions on Software Engineering, Piscataway, Jan. 2020. DOI: 10.1109/TSE.2020.2968072.
