Artigo

Lightweight PVIDNet: A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights

Carregando...
Imagem de Miniatura

Notas

Orientadores

Editores

Coorientadores

Membros de banca

Título da Revista

ISSN da Revista

Título de Volume

Editor

Multidisciplinary Digital Publishing Institute - MDPI

Faculdade, Instituto ou Escola

Departamento

Programa de Pós-Graduação

Agência de fomento

Tipo de impacto

Áreas Temáticas da Extenção

Objetivos de Desenvolvimento Sustentável

Dados abertos

Resumo

Abstract

Minimizing human intervention in engines, such as traffic lights, through automatic applications and sensors has been the focus of many studies. Thus, Deep Learning (DL) algorithms have been studied for traffic signs and vehicle identification in an urban traffic context. However, there is a lack of priority vehicle classification algorithms with high accuracy, fast processing, and a lightweight solution. For filling those gaps, a vehicle detection system is proposed, which is integrated with an intelligent traffic light. Thus, this work proposes (1) a novel vehicle detection model named Priority Vehicle Image Detection Network (PVIDNet), based on YOLOV3, (2) a lightweight design strategy for the PVIDNet model using an activation function to decrease the execution time of the proposed model, (3) a traffic control algorithm based on the Brazilian Traffic Code, and (4) a database containing Brazilian vehicle images. The effectiveness of the proposed solutions were evaluated using the Simulation of Urban MObility (SUMO) tool. Results show that PVIDNet reached an accuracy higher than 0.95, and the waiting time of priority vehicles was reduced by up to 50%, demonstrating the effectiveness of the proposed solution.

Descrição

Área de concentração

Agência de desenvolvimento

Palavra chave

Marca

Objetivo

Procedência

Submitted by Daniele Faria (danielefaria@ufla.br) on 2021-07-02T14:38:58Z No. of bitstreams: 2 ARTIGO_Lightweight PVIDNet A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights.pdf: 4360554 bytes, checksum: e27ee2d904b821a956a5040e09e538f1 (MD5) license_rdf: 907 bytes, checksum: c07b6daef3dbee864bf87e6aa836cde2 (MD5)
Approved for entry into archive by André Calsavara (andre.calsavara@biblioteca.ufla.br) on 2021-07-02T18:33:19Z (GMT) No. of bitstreams: 2 ARTIGO_Lightweight PVIDNet A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights.pdf: 4360554 bytes, checksum: e27ee2d904b821a956a5040e09e538f1 (MD5) license_rdf: 907 bytes, checksum: c07b6daef3dbee864bf87e6aa836cde2 (MD5)
Made available in DSpace on 2021-07-02T18:33:19Z (GMT). No. of bitstreams: 2 ARTIGO_Lightweight PVIDNet A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights.pdf: 4360554 bytes, checksum: e27ee2d904b821a956a5040e09e538f1 (MD5) license_rdf: 907 bytes, checksum: c07b6daef3dbee864bf87e6aa836cde2 (MD5) Previous issue date: 2020-10

Impacto da pesquisa

Resumen

ISBN

DOI

Citação

BARBOSA, R. C. et al. Lightweight PVIDNet: A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights. Sensors, [S. I.], v. 20, n. 21, 2020. DOI: 10.3390/s20216218.

Link externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como acesso aberto