tese

Sulfur-related alleviation mechanisms of selenium toxicity in plants

Carregando...
Imagem de Miniatura

Notas

Editores

Coorientadores

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Lavras

Faculdade, Instituto ou Escola

Departamento

Departamento de Ciência do Solo

Programa de Pós-Graduação

Programa de Pós-Graduação em Ciência do Solo

Agência de fomento

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Tipo de impacto

Áreas Temáticas da Extenção

Objetivos de Desenvolvimento Sustentável

Dados abertos

Resumo

Não se aplica.

Abstract

Selenium and sulfur present a strict relationship in plants and soils, affecting their uptake and accumulation. Thus, addressing this interaction is important to understand selenium nutrition and toxicity in plants, which could influence crop nutrition and production. Here, we aimed to evaluate the impact of selenate exposure on rice plants grown under different sulfate supplies at tillering and grain ripening phases. We studied the effects of varying selenate and sulfate doses on rice plants grown hydroponically or in soils with varying contents of clay. We also performed selenate sorption assays to evaluate the influence of clay content and sulfur doses on selenate adsorption and desorption in soils. Sulfate supply alleviated selenate toxicity in both short-term and long-term experiments. Selenate treatment up-regulated the expression of sulfate transporters, leading to increased sulfur contents in rice seedlings, which enhanced the antioxidant system and alleviated selenate toxicity. However, this enhanced mechanism is absent in seedlings grown under a low sulfur supply. Moreover, soil clay contents strongly influenced selenate availability. A high clay content promoted a higher selenate adsorption capacity, resulting in lower selenium contents in shoots and grains and the absence of toxicity symptoms. In contrast, a low clay content increased the availability of selenate added, which can favor the biofortification of crops. However, high selenate doses caused growth and yield impairment in rice cultivated in low-clay-content soil, with higher selenium concentrations in shoots and grains, potentially increasing the risk of selenate toxicity for humans and animals. In addition, we studied the influence of selenium treatment on sulfur and selenium metabolisms and plant growth of Arabidopsis and broccoli with different concentrations of glutathione, a key molecule of sulfur metabolism and plant detoxification. The selenate treatment decreased the glutathione contents in plant tissues. The pad2-1 plants (a glutathione-deficient Arabidopsis mutant) exhibited lower selenate tolerance and higher sulfate transporters (AtSULTR1;1 and AtSULTR1;2) gene expression on roots compared to Arabidopsis wild-type (WT), even exhibiting similar selenium and sulfur concentrations on shoots and roots. However, the reduced glutathione (GSH) supply alleviated the selenate toxicity and partially inhibited the sulfate transporters expression, indicating that both selenate effects are directly linked to glutathione metabolism. Conversely, the selenite did not present clear relation with glutathione or BoSULTR1;1 and BoSULTR1;2 in broccoli plants, while selenate decreased the glutathione contents and inhibited the growth of broccoli with lower glutathione concentrations severely.

Descrição

Área de concentração

Agência de desenvolvimento

Palavra chave

Marca

Objetivo

Procedência

Impacto da pesquisa

Resumen

ISBN

DOI

Citação

CARDOSO, A. A. de S. Sulfur-related alleviation mechanisms of selenium toxicity in plants. 2022. 76 p. Tese (Doutorado em Ciência do Solo) – Universidade Federal de Lavras, Lavras, 2022.

Link externo

Avaliação

Revisão

Suplementado Por

Referenciado Por