Artigo

On the test smells detection: an empirical study on the JNose Test accuracy

Carregando...
Imagem de Miniatura

Notas

Data

Orientadores

Editores

Coorientadores

Membros de banca

Título da Revista

ISSN da Revista

Título de Volume

Editor

Sociedade Brasileira de Computação

Faculdade, Instituto ou Escola

Departamento

Programa de Pós-Graduação

Agência de fomento

Tipo de impacto

Áreas Temáticas da Extenção

Objetivos de Desenvolvimento Sustentável

Dados abertos

Resumo

Abstract

Several strategies have supported test quality measurement and analysis. For example, code coverage, a widely used one, enables verification of the test case to cover as many source code branches as possible. Another set of affordable strategies to evaluate the test code quality exists, such as test smells analysis. Test smells are poor design choices in test code implementation, and their occurrence might reduce the test suite quality. A practical and largescale test smells identification depends on automated tool support. Otherwise, test smells analysis could become a cost-ineffective strategy. In an earlier study, we proposed the JNose Test, automated tool support to detect test smells and analyze test suite quality from the test smells perspective. This study extends the previous one in two directions: i) we implemented the JNose-Core, an API encompassing the test smells detection rules. Through an extensible architecture, the tool is now capable of accomodating new detection rules or programming languages; and ii) we performed an empirical study to evaluate the JNose Test effectiveness and compare it against the state-of-the-art tool, the tsDetect. Results showed that the JNose-Core precision score ranges from 91% to 100%, and the recall score from 89% to 100%. It also presented a slight improvement in the test smells detection rules compared to the tsDetect for the test smells detection at the class level.

Descrição

Área de concentração

Agência de desenvolvimento

Palavra chave

Marca

Objetivo

Procedência

Submitted by Eliana Bernardes (eliana@biblioteca.ufla.br) on 2022-08-05T19:13:51Z No. of bitstreams: 2 ARTIGO_On the test smells detection an empirical study on the JNose Test accuracy.pdf: 1221608 bytes, checksum: cfcaa07a185f6985bd2e6f45b5164f44 (MD5) license_rdf: 907 bytes, checksum: c07b6daef3dbee864bf87e6aa836cde2 (MD5)
Approved for entry into archive by Eliana Bernardes (eliana@biblioteca.ufla.br) on 2022-08-05T19:14:51Z (GMT) No. of bitstreams: 2 ARTIGO_On the test smells detection an empirical study on the JNose Test accuracy.pdf: 1221608 bytes, checksum: cfcaa07a185f6985bd2e6f45b5164f44 (MD5) license_rdf: 907 bytes, checksum: c07b6daef3dbee864bf87e6aa836cde2 (MD5)
Made available in DSpace on 2022-08-05T19:14:51Z (GMT). No. of bitstreams: 2 ARTIGO_On the test smells detection an empirical study on the JNose Test accuracy.pdf: 1221608 bytes, checksum: cfcaa07a185f6985bd2e6f45b5164f44 (MD5) license_rdf: 907 bytes, checksum: c07b6daef3dbee864bf87e6aa836cde2 (MD5) Previous issue date: 2021

Impacto da pesquisa

Resumen

ISBN

DOI

Citação

VIRGÍNIO, T. et al. On the test smells detection: an empirical study on the JNose Test accuracy. Journal of Software Engineering Research and Development, [S.l.], v. 9, 2021.

Link externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution 4.0 International