Artigo

Robust modified classical spherical tests in the presence of outliers

Carregando...
Imagem de Miniatura

Notas

Orientadores

Editores

Coorientadores

Membros de banca

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer Nature

Faculdade, Instituto ou Escola

Departamento

Programa de Pós-Graduação

Agência de fomento

Tipo de impacto

Áreas Temáticas da Extenção

Objetivos de Desenvolvimento Sustentável

Dados abertos

Resumo

Abstract

This paper verifies if the classical test to sphericity hypotheses with homogeneous variances equal to one and null covariances is applicable for cases in the presence of outliers based on four different tests performed to verify its robustness. The classical likelihood ratio test (LTR) is applied and we also propose some of its modifications in wich the sample covariance matrix is switched by one of its robust estimators, and since there is an assumption violation due to the presence of outliers, a Monte Carlo version of both asymptotic versions is considered. The normal and contaminated normal distributions are also considered. In conclusion, two of the tests are robust in the presence of outliers in a multivariate normal distribution: the Monte Carlo version of the original test (LRTMC) and the Monte Carlo version of the modified test where the sample covariance matrix is switched by the comedian estimator (LRTMCR), and the most powerful test is LRTMC.

Descrição

Área de concentração

Agência de desenvolvimento

Palavra chave

Marca

Objetivo

Procedência

Impacto da pesquisa

Resumen

ISBN

DOI

Citação

CAMPOS, L. L.; FERREIRA, D. F. Robust modified classical spherical tests in the presence of outliers. Statistical Papers, [S. I.], v. 63, p. 1561-1576, Oct. 2022. DOI: https://doi.org/10.1007/s00362-022-01289-w.

Link externo

Avaliação

Revisão

Suplementado Por

Referenciado Por