Artigo
Robust modified classical spherical tests in the presence of outliers
Carregando...
Notas
Data
Orientadores
Editores
Coorientadores
Membros de banca
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer Nature
Faculdade, Instituto ou Escola
Departamento
Programa de Pós-Graduação
Agência de fomento
Tipo de impacto
Áreas Temáticas da Extenção
Objetivos de Desenvolvimento Sustentável
Dados abertos
Resumo
Abstract
This paper verifies if the classical test to sphericity hypotheses with homogeneous variances equal to one and null covariances is applicable for cases in the presence of outliers based on four different tests performed to verify its robustness. The classical likelihood ratio test (LTR) is applied and we also propose some of its modifications in wich the sample covariance matrix is switched by one of its robust estimators, and since there is an assumption violation due to the presence of outliers, a Monte Carlo version of both asymptotic versions is considered. The normal and contaminated normal distributions are also considered. In conclusion, two of the tests are robust in the presence of outliers in a multivariate normal distribution: the Monte Carlo version of the original test (LRTMC) and the Monte Carlo version of the modified test where the sample covariance matrix is switched by the comedian estimator (LRTMCR), and the most powerful test is LRTMC.
Descrição
Área de concentração
Agência de desenvolvimento
Palavra chave
Marca
Objetivo
Procedência
Impacto da pesquisa
Resumen
Palavras-chave
ISBN
DOI
Citação
CAMPOS, L. L.; FERREIRA, D. F. Robust modified classical spherical tests in the presence of outliers. Statistical Papers, [S. I.], v. 63, p. 1561-1576, Oct. 2022. DOI: https://doi.org/10.1007/s00362-022-01289-w.
