dissertação
Processamento de grãos de Moringa oleifera Lam.: efeitos da secagem na eficiência de extração mecânica do óleo e modelagem matemática da higroscopicidade da torta
Carregando...
Notas
Data
Autores
Orientadores
Editores
Coorientadores
Membros de banca
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Lavras
Faculdade, Instituto ou Escola
Departamento
Departamento de Engenharia
Programa de Pós-Graduação
Programa de Pós-graduação em Engenharia Agrícola
Agência de fomento
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Tipo de impacto
Áreas Temáticas da Extenção
Objetivos de Desenvolvimento Sustentável
Dados abertos
Resumo
Moringa oleifera L. é uma planta de diversas utilidades, introduzida no Brasil na década dos 50, contem grãos com alto teor de lipídios e proteínas. O óleo de moringa é considerado resistente à oxidação, quando comparados a outros óleos de origem vegetal e pode ser utilizado como lubrificante de máquinas e matéria prima na produção de biodiesel. Além disso, a torta obtida da extração de óleo é usada na alimentação animal, fertilizantes e no tratamento de águas residuais. Considerando a importância da manutenção da qualidade dos produtos pós-colheita, este trabalho teve como objetivo avaliar a influência de diferentes temperaturas de secagem nas propriedades físicas e estruturais dos grãos e na extração mecânica do óleo. Como também ajustar modelos matemáticos a cinética de secagem dos grãos e higroscopicidade da torta. Os grãos de moringa foram provenientes do estado de Pará. Os tratamentos foram: grãos úmidos sem secagem e grãos submetidos à secagem artificial com ar na temperatura de 40, 50 e 60 ºC. Para cada amostra foram determinadas a massa específica aparente e analisadas as estruturas mediante microscopia eletrônica de varredura (MEV) para observar a contração celular. O rendimento e eficiência de extração do óleo foram feitas a partir da diferença entre o óleo residual da torta e o total extraído quimicamente do grão. Para a modelagem matemática foram empregados diferentes modelos para o ajuste por regressão não linear dos dados experimentais de cinética de secagem dos grãos e higroscopicidade da torta, além de calcular as propriedades termodinâmicas sobre diferentes temperaturas e umidades relativas do ar para a torta. Para a cinética de secagem o modelo de Midilli representou melhor os dados experimentais para as amostras secas a 40 ºC, para os grãos secos nas temperaturas de 50 e 60 ºC o modelo de Exponencial Dois Termos e Valcam foram os que mais se adaptaram, respectivamente. Foi detectada diferença significativa na massa especifica aparente entre os grãos úmidos sem secagem e os grãos secados as diferentes temperaturas. Para a análise ultra estrutural realizando a MEV observou-se contração e desorganização celular para os grãos secados a diferentes temperaturas. O tratamento de secagem com temperatura do ar de secagem de 60 ºC foi o que apresentou melhor rendimento de extração e eficiência da prensa. Os modelos que melhor representam a higroscopicidade da torta de Moringa oleifera L. são o de Sigma Copace e Halsey modificado. Com a diminuição do teor de água de equilíbrio os valores do calor isostérico integral e entropia diferencial aumentaram e a energia livre de Gibbs diminuiu. O processo de sorção da torta de Moringa oleifera L. é um processo espontâneo. Valores iguais ou abaixo de 0,082 (b.s.) no teor de água de equilíbrio na torta apresenta-se na faixa segura para o armazenamento nas temperaturas de 20, 30, 55 e 70 ºC.
Abstract
Moringa oleifera L. is a plant with several uses, introduced in Brazil in the 50's, contains grains with a high content of lipids and proteins. Moringa oil is considered resistant to oxidation when compared to other oils of vegetable origin and can be used as a lubricant for machines and raw material in the production of biodiesel. In addition, the cake obtained from oil extraction is used in animal feed, fertilizers and wastewater treatment. Considering the importance of maintaining the quality of post-harvest products, this work aimed to evaluate the influence of different drying temperatures on the physical and structural properties of the grains and on the mechanical extraction of the oil. As well as adjusting mathematical models for grain drying kinetics and cake hygroscopicity. The moringa grains came from the state of Pará. The treatments were: wet grains without drying and grains submitted to artificial drying with air at 40, 50 and 60 ºC. For each sample, the apparent specific mass was determined and the structures were analyzed using scanning electron microscopy (SEM) to observe cell contraction. The yield and efficiency of oil extraction were calculated from the difference between the residual oil in the cake and the total chemically extracted from the grain. For the mathematical modeling, different models were used to adjust the experimental data of grain drying kinetics and cake hygroscopicity by non-linear regression, in addition to calculating the thermodynamic properties under different temperatures and relative air humidity for the cake. For the drying kinetics, the Midilli model best represented the experimental data for the samples dried at 40 ºC, for the grains dried at temperatures of 50 and 60 ºC, the Exponential Two Terms and Valcam models were the ones that best adapted, respectively. A significant difference was detected in the apparent specific mass between the wet grains without drying and the grains dried at different temperatures. For the ultrastructural analysis, performing SEM, contraction and cellular disorganization were observed for grains dried at different temperatures. The drying treatment with drying air temperature of 60 ºC was the one that presented the best extraction yield and press efficiency. The models that best represent the hygroscopicity of Moringa oleifera L. cake are Sigma Copace and modified Halsey. As the equilibrium water content decreases, the integral isosteric heat and differential entropy values increase and the Gibbs free energy decreases. The sorption process of Moringa oleifera L. cake is a spontaneous process. Values equal to or below 0.082 (d.b.) in the equilibrium water content in the cake are in the safe range for storage at temperatures of 20, 30, 55 and 70 ºC.
Moringa oleifera L. is a plant with several uses, introduced in Brazil in the 50's, contains grains with a high content of lipids and proteins. Moringa oil is considered resistant to oxidation when compared to other oils of vegetable origin and can be used as a lubricant for machines and raw material in the production of biodiesel. In addition, the cake obtained from oil extraction is used in animal feed, fertilizers and wastewater treatment. Considering the importance of maintaining the quality of post-harvest products, this work aimed to evaluate the influence of different drying temperatures on the physical and structural properties of the grains and on the mechanical extraction of the oil. As well as adjusting mathematical models for grain drying kinetics and cake hygroscopicity. The moringa grains came from the state of Pará. The treatments were: wet grains without drying and grains submitted to artificial drying with air at 40, 50 and 60 ºC. For each sample, the apparent specific mass was determined and the structures were analyzed using scanning electron microscopy (SEM) to observe cell contraction. The yield and efficiency of oil extraction were calculated from the difference between the residual oil in the cake and the total chemically extracted from the grain. For the mathematical modeling, different models were used to adjust the experimental data of grain drying kinetics and cake hygroscopicity by non-linear regression, in addition to calculating the thermodynamic properties under different temperatures and relative air humidity for the cake. For the drying kinetics, the Midilli model best represented the experimental data for the samples dried at 40 ºC, for the grains dried at temperatures of 50 and 60 ºC, the Exponential Two Terms and Valcam models were the ones that best adapted, respectively. A significant difference was detected in the apparent specific mass between the wet grains without drying and the grains dried at different temperatures. For the ultrastructural analysis, performing SEM, contraction and cellular disorganization were observed for grains dried at different temperatures. The drying treatment with drying air temperature of 60 ºC was the one that presented the best extraction yield and press efficiency. The models that best represent the hygroscopicity of Moringa oleifera L. cake are Sigma Copace and modified Halsey. As the equilibrium water content decreases, the integral isosteric heat and differential entropy values increase and the Gibbs free energy decreases. The sorption process of Moringa oleifera L. cake is a spontaneous process. Values equal to or below 0.082 (d.b.) in the equilibrium water content in the cake are in the safe range for storage at temperatures of 20, 30, 55 and 70 ºC.
Moringa oleifera L. is a plant with several uses, introduced in Brazil in the 50's, contains grains with a high content of lipids and proteins. Moringa oil is considered resistant to oxidation when compared to other oils of vegetable origin and can be used as a lubricant for machines and raw material in the production of biodiesel. In addition, the cake obtained from oil extraction is used in animal feed, fertilizers and wastewater treatment. Considering the importance of maintaining the quality of post-harvest products, this work aimed to evaluate the influence of different drying temperatures on the physical and structural properties of the grains and on the mechanical extraction of the oil. As well as adjusting mathematical models for grain drying kinetics and cake hygroscopicity. The moringa grains came from the state of Pará. The treatments were: wet grains without drying and grains submitted to artificial drying with air at 40, 50 and 60 ºC. For each sample, the apparent specific mass was determined and the structures were analyzed using scanning electron microscopy (SEM) to observe cell contraction. The yield and efficiency of oil extraction were calculated from the difference between the residual oil in the cake and the total chemically extracted from the grain. For the mathematical modeling, different models were used to adjust the experimental data of grain drying kinetics and cake hygroscopicity by non-linear regression, in addition to calculating the thermodynamic properties under different temperatures and relative air humidity for the cake. For the drying kinetics, the Midilli model best represented the experimental data for the samples dried at 40 ºC, for the grains dried at temperatures of 50 and 60 ºC, the Exponential Two Terms and Valcam models were the ones that best adapted, respectively. A significant difference was detected in the apparent specific mass between the wet grains without drying and the grains dried at different temperatures. For the ultrastructural analysis, performing SEM, contraction and cellular disorganization were observed for grains dried at different temperatures. The drying treatment with drying air temperature of 60 ºC was the one that presented the best extraction yield and press efficiency. The models that best represent the hygroscopicity of Moringa oleifera L. cake are Sigma Copace and modified Halsey. As the equilibrium water content decreases, the integral isosteric heat and differential entropy values increase and the Gibbs free energy decreases. The sorption process of Moringa oleifera L. cake is a spontaneous process. Values equal to or below 0.082 (d.b.) in the equilibrium water content in the cake are in the safe range for storage at temperatures of 20, 30, 55 and 70 ºC.
Descrição
Área de concentração
Agência de desenvolvimento
Palavra chave
Marca
Objetivo
Procedência
Impacto da pesquisa
Resumen
ISBN
DOI
Citação
ROBLES PADILLA, J. R. Processamento de grãos de Moringa oleifera Lam.: efeitos da secagem na eficiência de extração mecânica do óleo e modelagem matemática da higroscopicidade da torta. 2023. 73 p. Dissertação (Mestrado em Engenharia Agrícola)–Universidade Federal de Lavras, Lavras, 2023.
Link externo
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como acesso aberto

