Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/48677
Título: | Random forests for online intrusion detection in computer networks |
Palavras-chave: | Intrusion detection systems Computer networks Computational Intelligence Random forests Sistemas de detecção de intrusão Redes de computadores Inteligência computacional |
Data do documento: | 2021 |
Editor: | Science Publications |
Citação: | SCALCO NETO, H.; LACERDA, W. S.; FRANÇOZO, R. V. Random forests for online intrusion detection in computer networks. Journal of Computer Science, [S. l.], v. 17, n. 10, p. 905-914, 2021. DOI: 10.3844/jcssp.2021.905.914. |
Resumo: | This study proposes a methodology to build an Online Network Intrusion Detection System by using the Computational Intelligence technique called Random Forests and an API to preprocess the network packets. The experiments were carried out from two network traffic databases: The ISCX (i); and a test database (ii) created with the proposed API in our own network environment. The results obtained with the Random Forests technique show accuracy rates around 98%, bringing significant advances in the area of Intrusion Detection and affirming the high efficiency of the use of the technique to solve problems of intrusion detection in real network environments. |
URI: | http://repositorio.ufla.br/jspui/handle/1/48677 |
Aparece nas coleções: | DAT - Artigos publicados em periódicos DCA - Artigos publicados em periódicos DCC - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Random forests for online intrusion detection in computer networks.pdf | 539,96 kB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons